1.Weishan Cisri- Eare Earth Materials Co.,Ltd.,Jining 277600, Shandong, China 2. Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081, China 3. Beijing Key Laboratory of Precision Alloys, Beijing 100081, China
Abstract:The category and development of hydrogen storage technologies as well as the metal hydride materials for hydrogen storage were discussed, which contribute to offer reference for subsequent studies. Especially, the practical applications of hydrogen storage material in large- scale wind power stored were made the detailed elaboration.
Jain IP. Hydrogen the fuel for 21st century [J]. Int. J. Hydrogen Energy, 2009, 34:7368–7378.
[2]
Aardahl CL, Rassat SD. Overview of systems considerations for on-board chemical hydrogen storage [J]. Int. J. Hydrogen Energy, 2009, 34: 6676–6683.
[3]
Claudio Corgnale, Theodore Motyka, Scott Greenway, Jose M. Perez-Berrios, Akihiro Nakano, Hiroshi Ito, Tetsuhiko Maeda. Metal hydride bed system model for renewable source driven Regenerative Fuel Cell [J]. J. Alloys Compd., 2013, 580: S406–S409
[4]
Hwang HT, Varma A. Hydrogen storage for fuel cell vehicles [J]. Curr. Opin. Chem. Eng., 2014, 5:42–48.
[5]
Arnold G, Wolf J. Liquid hydrogen for automotive application:next generation fuel for FC and ICE vehicles[J]. TeionKogaku (Journal of the Cryogenic Society of Japan), 2005,40(6):221–224.
[6]
Wolf J. Liquid-hydrogen technology for vehicles [J]. MRS Bull., 2002, 27(9):684–687.
[7]
Johnston B, Michael C, Khare A. Hydrogen: the energy source for the 21st century [J]. Technovation, 2005, 25(6):569–585.
Huang B Y, Li C D, Shi L K, Qiu G Z,Zuo T Y. China materials engineering canon(Volume 4):Non-ferrous metal material engineering [M]. Beijing: Chemical Industry Press, 2006:760.
[13]
SiroshN. Hydrogen composite Tank Program[C]//The 2002 U.S.DOE hydrogen Program Review Meeting.Washington: National Renewable Energy Laboratory, 2002.
[14]
Lincoln Composites demos10000 psi hydrogen tank [J]. FuelCells Bulletin, 2002,2002(7):6–12.
[15]
Toyota [EB/OL]. http://www.toyota.co.jp/jpn/tech/index.html.
[16]
Chen P, Zhu M. Recent progress in hydrogen storage [J]. Mater. today, 2008, 11(12):36–43.
[17]
Lin CK, Chen YC. Effects of cyclic hydriding-dehydriding reactions of LaNi5 on the thin-wall deformation of metal hydride storage vessels with various configurations [J]. Renew. Energ., 2012, 48:404–410.
[18]
Okumura M, Ikado A, Saito Y, Aoki H, Miura T, Kawakami Y. Pulverization mechanism of hydrogen storage alloys on microscale packing structure [J]. Int. J. Hydrogen Energy, 2012, 37(14):10715–10723.
[19]
Chaise A, Rango P, Marty P, Fruchart D. Experimental and numerical study of a magnesium hydride tank [J]. Int. J. Hydrogen Energy, 2010, 35(12):6311–6322.
[20]
Hahne?E, Kallweit?J. Thermal?Conductivity?of?Metal?Hydride?Materials?for?Storage?of?Hydrogen:Experimental?Investigation [J]. Int. J. Hydrogen Energy, 1998, 23(2):107-114.
[21]
Bhouri M, Goyette J, Hardy BJ, Anton DL. Honeycomb metallic structure for improving heat exchange in hydrogen storage system [J]. Int. J. Hydrogen Energy, 2011, 36(11):6723–6738.
[22]
Mellouli S, Dhaou H, Askri F, Jemni A, Ben Nasrallah S. Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger [J]. Int. J. Hydrogen Energy, 2009, 34(23):9393–9401.
[23]
Herbrig K, R?ntzsch L, Pohlmann C, Wei?g?rber T, Kieback B. Hydrogen storage systems based on hydride-graphite composites: computer simulation and experimental validation [J]. Int. J. Hydrogen Energy, 2013, 38(17):7026–7036.
[24]
Garrison SL, Hardy BJ, Gorbounov MB,Tamburello DA, Corgnale C, vanHassel BA. Optimization of internal heat exchangers for hydrogen storage tanks utilizing metal hydrides[J]. Int. J. Hydrogen Energy, 2012, 37(3):2850–2861.
[25]
Chung CA, Yang SW, Yang CY, Hsu CW, Chiu PY. Experimental study on the hydrogen charge and discharge rates of metal hydride tanks using heat pipes to enhance heat transfer [J]. Appl. Energ., 2013, 103:581–587.
[26]
Dhaou H, Souahlia A, Mellouli S, Askri F, Jemni A, NasrallahS B. Experimental study of a metal hydride vessel based on a finned spiral heat exchanger [J]. Int. J. Hydrogen Energy, 2010, 35(4):1674–1680.
[27]
Wang H, Prasad AK, Advani SG. Accelerating hydrogen absorption in a metal hydride storage tank by physical mixing [J]. Int. J. Hydrogen Energy, 2014, 39(21):11035–11046.
[28]
Garrier S, Delhomme B, Rango P, Marty P, Fruchart D, Miraglia S. A new MgH2 tank concept using a phase-change material to store the heat of reaction [J]. Int. J. Hydrogen Energy, 2013, 38(23):9766–9771.
[29]
Chaise A, Rango P, Marty P, Fruchart D, Miraglia S, Olivès R. Enhancement of hydrogen sorption in magnesium hydride using expanded graphite [J]. Int. J. Hydrogen Energy, 2009, 34(20):8589–8596.
[30]
Zhang PL. A metal hydride hydrogen storage device and its preparation method: China,CN101235937A[P/OL].2008-08-06.http://books.google.com/patents/CN101235937A?hl=zh-CN&cl=zh.
[31]
Zhejiang University. A hydrogen storage device and its manufacturing method:China,CN101413625A[P/OL].2008-11-27.http://industry.wanfangdata.com.cn/sh/Detail/Patent?id=Patent_CN200810162216.2.
[32]
Ahluwalia RK, Hua TQ, Peng JK, Lasher S, McKenney K,Sinha J, Gardiner M. Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications [J]. Int. J. Hydrogen Energy, 2010, 35(9):4171–4184.
[33]
Aceves SM, Espinosa-Loza F, Ledesma-Orozco E, Ross TO, Weisberg AH, Brunner TC. High-density automotive hydrogen storage with cryogenic capable pressure vessels [J]. Int. J. Hydrogen Energy, 2010, 35(3):1219–1226.
[34]
Takeichi N, Senoh H, Yokota T, Tsuruta H, Hamada K, Takeshita HT. “Hybrid hydrogen storage vessel”, a novel high-pressure hydrogen storage vessel combined with hydrogen storage material [J]. Int. J. Hydrogen Energy, 2003, 28(10):1121–1129.
[35]
Matsunaga T,Kon M,Washio K,Shinozawa T,Ishikiriyama M. TiCrVMo alloys With high dissociation Pressure for high Pressure MH tank [J]. Int. J. Hydrogen Energy, 2009, 34(3):1458–1462.
[36]
Lototskyy MV, Yartys VA, Pollet BG, Bowman Jr RC. Metal hydride hydrogen compressors: A review [J]. Int. J. Hydrogen Energy, 2014, 39(11): 5818–5851.
[37]
Srivastava S , Upadhyay RK. Investigations on synthesis, characterization and hydrogenation behavior of hydrogen storage alloys, Mm1-xCaxNi5-y-zAlyFez (x = 0, 0.05, 0.1, 0.2, 0.3; y =0, 0.1; z = 0, 0.1) [J]. Int. J. Hydrogen Energy, 2007, 32(17): 4195–4201.
[38]
Lee SM, Perng TP. Effect of the second phase on the initiation of hydrogenation of TiFe1?xMx (M = Cr,Mn) alloys [J]. Int. J. Hydrogen Energy, 1994, 19(3): 259–263.
[39]
Wang XH, Chen RG, Chen CP, Wang QD. Hydrogen storage properties of TixFe + y wt.% La and its use in metal hydride hydrogen compressor [J]. J. Alloys Compd., 2006, 425(1–2): 291–295.
[40]
Zaluski L, Zaluski A, Tessier P. Effects of relaxation on hydrogen absorption in Fe -Ti produced by ball-milling [J]. J. Alloys Compd., 1995, 227(1): 53-57.
[41]
Chen ZW, Xiao XZ, Chen LX, Fan XL, Liu LX, Li SQ, Ge HW, Wang QD. Influence of Ti super-stoichiometry on the hydrogen storage properties of Ti1+xCr1.2Mn0.2Fe0.6 (x = 0–0.1) alloys for hybrid hydrogen storage application [J]. J. Alloys Compd., 2014, 585:307–311
[42]
Liu XW, Su YQ, Luo LS, Li K, Dong FY, Guo JJ, Fu HZ. Effect of hydrogen treatment on solidification structures and mechanical properties of TiAl alloys [J]. Int. J. Hydrogen Energy, 2011, 36(4): 3260–3267.
[43]
Liu XW, Su YQ, Luo LS, Liu JP, Guo JJ, Fu HZ. Effect of hydrogen on hot deformation behaviors of TiAl alloys [J]. Int. J. Hydrogen Energy, 2010, 35(24): 13322–13328
[44]
Boulghallat M, Gerard N. Hydriding kinetics of TiFe0.5Co0.5 compounds [J]. J. Less-Common Metal., 1991, 172–174(3):1052–1057.
[45]
Guéguen A, Latroche M. Influence of the addition of vanadium on the hydrogenation properties of the compounds TiFe0.9Vx and TiFe0.8Mn0.1Vx (x = 0, 0.05 and 0.1) [J]. J. Alloys Compd., 2011, 509(18):5562–5566.